일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 자연어처리
- 순차 자료구조
- 딥러닝 교차엔트로피
- 단층퍼셉트론
- 인공지능
- 뇌를 자극하는 알고리즘
- 단층 퍼셉트론
- 자료구조
- 오퍼랜드
- 신경망
- 교차 엔트로피
- lost function
- 연결 자료구조
- 확률분포
- 회귀분석
- DBMS
- 파이썬 딥러닝
- 딥러닝
- 딥러닝 교차 엔트로피
- 퍼셉트론
- 선형 리스트
- 자료구조 알고리즘
- 노드
- 엔트로피
- 파이썬 날코딩으로 알고 짜는 딥러닝
- 편미분
- 컴퓨터구조
- DB
- 파라미터
- 리스트
- Today
- Total
목록파이썬 (2)
YZ ZONE
2.11 확장하기: 균형 잡힌 데이터셋과 착시 없는 평가방법 균형 잡힌 데이터 셋 - 취지:별과 펄서를 비슷한 수로 만들어 펄서 학습 기회를 늘리자 *별 데이터를 일부 버려 개수를 펄서에 맞추는 것은 가장 나쁜 대책 - 펄서 데이터를 중복 사용하여 별과 같은 개수로 하자 *2.11.3에서 확장처리 학습 데이터셋과 평가 데이터셋에 같은 내용 배정되는 문제 발생 과적합의 원인이 되고 있음 *약간의 잡음을 추가하는 것도 좋은 방법 착시 없는 평가 방법 -높은 정확도: 균형 잡히지 않은 데이터셋에서는 쉽게 도달 가능 *모든 문제에 펄서가 아니라고 답하면 90% 넘는 정확도 달성 가능 *정확도만으로는 온전한 성능 평가 곤란 - 확장된 평가 척도 *정밀도: 신경망이 참으로 추정한 것 중 실제로 답이 참인 것의 비율..
이진 판단에서 신경망 학습의 원리 학습 중인 딥러닝 모델의 추정 확률 분포 P로 설정 이 모델이 흉내내야 할 미지의 확률 분포를 Q로 설정 입력값을 구조에 넣어서 출력이 나오고 교차 엔트로피로 두 개의 확률 분포를 측정을 하고 w를 수정해 차이를 줄이는것 P와 Q의 교차 엔트로피 값을 계산 혹은 추정하여 교차 엔트로피값이 작아지는 쪽으로 Q를 꾸준히 수정해 확률 분포 Q를 확률 분포 P에 가깝게 접근시킨다. 실제 학습의 어려움 -1 확률 분포 Q를 알지 못하는 상태목표점에 도달하지 않은 상태 임으로 실제 확률분표 Q가 존재하지 않음 따라서 P와 Q의 교차 엔트로피 값을 계산할 수 없다. 확률 분포 Q는 딥러닝 모델이 학습 통해 찾아야 할 목표점 데이터셋 데이터는 존재 가능한 실세계 데이터의 샘플((일부분..