일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- DBMS
- 신경망
- 리스트
- DB
- 퍼셉트론
- 딥러닝
- 엔트로피
- 단층퍼셉트론
- 확률분포
- 단층 퍼셉트론
- 딥러닝 교차엔트로피
- 순차 자료구조
- 파이썬 딥러닝
- 자료구조
- 인공지능
- 회귀분석
- 선형 리스트
- lost function
- 편미분
- 오퍼랜드
- 파이썬 날코딩으로 알고 짜는 딥러닝
- 교차 엔트로피
- 컴퓨터구조
- 연결 자료구조
- 딥러닝 교차 엔트로피
- 자연어처리
- 파라미터
- 자료구조 알고리즘
- 노드
- 뇌를 자극하는 알고리즘
- Today
- Total
목록단층퍼셉트론 (3)
YZ ZONE
3.2 선택 분류 문제의 신경망 처리 선택 분류 문제 - 몇 가지 후보 가운데 하나를 골라 답하는 문제 불량 유형을 가려내야 한다면 선택 분류 문제 철판의 불량 여부 판정: 이진 판단 문제 0 or 1 - 객관식 시험 문제 - 각종 의사 결정 - 언어행위: 알파벳 혹은 음소의 선택 및 나열 각각의 알파벳이나 음소 선택의 선택 분류 문제 선택 분류를 위한 신경망 구성 - 후보 항목 수만큼의 퍼셉트론 배치 각 후보 항목과 일대일 대응 관계 - 퍼셉트론 출력: 로짓 추정값 로짓값: 로그 척도의 상대적 추천 강도 후보 항목 번호를 직접 추정하거나 각 후보 항목의 확률값을 곧바로 계산하기는 출력 범위 제한도 어렵고 미분 처리가 어려워 학습 방법도 마땅치 않음 - 전체적으로 이진 판단과 유사하지만 모든 후보 항목에..
[접근1] 신경망 출력을 이진값으로 퍼셉트론 구조상 0과 1 두 가지 값만 내도록 제한 곤란 미분곤란: 역전파 학습 거의 불가능 [접근2] 신경망 출력을 ‘참’일 확률값으로 퍼셉트론 구조상 [0.0, 1.0] 구간 내 값만 내도록 제한 곤란 [접근3] 신경망 출력을 ‘참’일 가능성의 로짓값으로 로짓값: 상대적 가능성 정도를 로그 척도로 표현한 값 간단한 변환 함수를 추가해 확률 값으로 변환가능 값의 범위에 제한이 없어서 퍼셉트론 출력 형태로 적합 미분 처리가 용이해 역전파 학습에 적당 딥러닝에서는 이진판단 처리에 [접근3]이용 뒤에 소개될 시그모이드 함수를 퍼셉트론 안에 삽입하면 [접근2]도 가능 💡 퍼셉트론 구조상 이진 판단 즉 0과 1을 두가지 값만 내도록하는 것은 미분이 곤란하며 역전파 학습이 거의..
1.1 단층 퍼셉트론 신경망 구조 단층퍼셉트론 가장 기본적인 신경망 구조 일련의 퍼셉트론을 한 줄로 배치 입력 벡터 하나로부터 출력 벡터 하나를 단번에 생성 입출력 패턴 입력벡터: x = (x1,x2,x3,x4) 출력벡터: y = (y1,y2,y3) 문제의 내용에 따라 크기가 결정됨 퍼셉트론 열 P1,P2,P3 출력 벡터 크기만큼의 퍼셉트론 배치 가중치 weight 입력 벡터와 퍼셉트론 사이의 완전 연결 [입력벡터크기, 퍼셉트론개수] 형태의 행렬 입력 값에 가중치의 값을 곱한 값들의 합이 출력 노드의 값으로 출력됨. weight를 수정해 나가는 과정이 학습 과정. 어떤 입력 값을 주었을 때 웨이트 값에 따라서 출력이 결정되는 구조. 편향 bias 퍼셉트론 별로 가산되는 스칼라 값 [퍼셉트론 개수] 형태의..